Phase reversal of vibratory signals in honeycomb may assist dancing honeybees to attract their audience.
نویسندگان
چکیده
Forager honeybees dancing on the comb are able to attract dance-followers from distances across the comb that are too remote for tactile or visual signals to play a role. An alternative signal could be the vibrations of the comb at 200-300 Hz generated by dancing bees but which, without amplification, may not be large enough to alert remote dance-followers. We describe here, however, an unexpected property of honeycomb when it is subjected to vibration at around 200 Hz that would represent an effective amplification of the vibratory signals for remote dance-followers. We find that, at a specific distance from the origin of an imposed vibration, the walls across a single comb cell abruptly reverse the phase of their displacement and move in opposite directions to one another. Behavioural measurements show that the distance from which the majority of remote dance-followers are recruited coincides with the location of this phase-reversal phenomenon relative to the signal source. We propose that effective signal amplification by the phase-reversal phenomenon occurs when bees straddle a cell across which the phase reversal is expressed. Such a bee would be subjected to a situation in which the legs were moving towards and away from one another instead of in the same direction. In this manner, remote dance-followers could be alerted to a dancer performing in their vicinity.
منابع مشابه
Behaviour-locked signal analysis reveals weak 200-300 Hz comb vibrations during the honeybee waggle dance.
Waggle-dancing honeybees produce vibratory movements that may facilitate communication by indicating the location of the waggle dancer. However, an important component of these vibrations has never been previously detected in the comb. We developed a method of fine-scale behavioural analysis that allowed us to analyze separately comb vibrations near a honeybee waggle dancer during the waggle an...
متن کاملHow Do Honeybees Attract Nestmates Using Waggle Dances in Dark and Noisy Hives?
It is well known that honeybees share information related to food sources with nestmates using a dance language that is representative of symbolic communication among non-primates. Some honeybee species engage in visually apparent behavior, walking in a figure-eight pattern inside their dark hives. It has been suggested that sounds play an important role in this dance language, even though a va...
متن کاملAn Improved Time-Reversal-Based Target Localization for Through-Wall Microwave Imaging
Recently, time reversal (TR) method, due to its high functionality in heterogeneous media has been widely employed in microwave imaging (MI) applications. One of the applications turning into a great interest is through-wall microwave imaging (TWMI). In this paper, TR method is applied to detect and localize a target obscured by a brick wall using a numerically generated data. Regarding this, i...
متن کاملStable algebraic spin liquid in a Hubbard model.
We show the existence of a stable algebraic spin liquid (ASL) phase in a Hubbard model defined on a honeycomb lattice with spin-dependent hopping that breaks time-reversal symmetry. The effective spin model is the Kitaev model for large on-site repulsion. The gaplessness of the emergent Majorana fermions is protected by the time-reversal invariance of this model. We prove that the effective spi...
متن کاملA New View of the Waggle Dance: Making Scents to Recruit Fellow Foragers
1837 To the untrained observer, the collective feats of social insects appear downright mysterious. How could insects with decidedly less-complex neural circuits than humans evolve the highly sophisticated communication strategies needed to build 3to 4-meter-tall mound nests (termites), haul vegetation back to the home colony to cultivate fungi for food (leafcutter ants), or launch mass predato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 204 Pt 21 شماره
صفحات -
تاریخ انتشار 2001